

Acta Crystallographica Section C

Crystal Structure Communications

ISSN 0108-2701

The 1:1 complex of 4-nitrophenol and 4-methylpyridine

Zhi Min Jin,* Yuan Jiang Pan, Duan Jun Xu and Yuan Zhi Xu

Department of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China

Correspondence e-mail: jzm@kali.com.cn

Received 5 January 2000 Accepted 18 January 2000

Data validation number: IUC0000018

4-Nitrophenol and 4-methylpyridine form a 1:1 hydrogen-bonded dimer, $C_6H_5NO_3.C_6H_7N$, with the molecules linked by an $O-H\cdots N$ hydrogen bond $[O\cdots N$ 2.668 (2) Å]. The dihedral angle between the phenyl and pyridine ring is 57.8 (4)°. The dimers pack in a herring-bone structure in the crystal lattice.

Comment

The phenol–pyridine solution systems have been intensively studied by various means (Emsley, 1968; Moreau Descoings *et al.*, 1985), focusing on the tautomerization (Ratajczak & Sobszyk, 1965; Nouwen & Huyskens, 1973) between hydrogen bonds of $O-H\cdots N$ and $N^+-H\cdots O^-$. Of equivalently interesting is to reveal the hydrogen-bond patterns and their nature in solid state. As part of the investigation on the complex of pyridine with phenol in solid state, the crystal structure of the complex of 4-nitrophenol (NP) and 4-methylpyridine (MPy) has been determined, and reported herein.

In the crystallographic structure, the entities of NP and MPy are linked by an O1-HO1···N2 hydrogen bond [O1-N2 2.668 (2) Å, HO1···N2 1.74 (2) Å and O1-HO1···N2 174 (2)°]. The base of MPy does not appear to be protonated by the NP. In comparison with the original pyridine, while the angle of C-N-C in the ring of pyridinium is expanded, both of N-C-C are reduced. These feature are obviously showed in the 1:1 crystalline complexes (Malarski *et al.*, 1987, 1996) of MPy and pentachlorophenol (MPy-PCP) respectively at 80

and 295 K. The bond angle values of C-N-C, N-C-C in the 4-methylpyridinium of MPy-PCP at 80 K have been revealed to be 119.9 (2), 121.3 (2) and 121.4 (2)°, respectively, and in the MPy of MPy-PCP at 295 K to be 118.0 (4), 122.3 (4) and 122.5 (4)°, respectively. The 4-methylpyridinium in it's trifluoroacetate (Dega-Szafran et al., 1992) displays itself with angles of C-N-C [120.5 (3) $^{\circ}$] and N-C-C [119.9 (4) and 120.4 (4)°]. The MPy in the title complex with angles of C11-N2-C7 [116.1 (2)°], N2-C7-C8 [123.6 (2)°] and N2-C11-C10 [123.7 (2)°] demonstrate obviously unprotonated features. The O1-C1 length value of 1.344 (2) %A, with a minute deviation from 1.351 Å for crystal NP (Coppens & Schmidt (1965), is closed to the average C-O length value of 1.36 Å for phenol (Sakurai, 1962), and deviated obviously from average C-O value of 1.255 Å for phenolate (Sawka-Dobrowolska et al., 1995). Such a value for the C1-O1 bond length with the angle C1-O1-H (116.8°) point to some contribution of sp^2 hybridization of the O atom and the double-bond character of the C1-O1 bond in the title complex. The N1-C4 bond length [1.449 (2) Å] with the angle sum around N1 (360°) indicate also some double-bond character (Kawai et al., 1976).

The geometrical arrangement in the crystal structure is characterized by the formation of herring-bone structure of MPy and NP. The nitro group is coplanar with the phenyl ring. The dihedral angle between phenol phenyl ring and pyridine ring is 57.8°. While, one molecule pair of NP and MPy are connected by hydrogen bond of O1—N2 to form such a structure with an orientation, another pair are arranged in the same fashion except for an inverse orientation to the former pair.

Experimental

NP (0.01 mol) was dissolved in MPy (0.02 mol) by heating to a temperature where a clear solution resulted. Single crystals of the title complex was formed by standing of the resulting solution overnight at 293 K.

Crystal data

 $C_6H_5NO_3\cdot C_6H_7N$ Mo $K\alpha$ radiation $M_r = 232.24$ Cell parameters from 29 Orthorhombic, Pbca reflections $\theta = 3.34 - 17.27^{\circ}$ a = 7.199(1) Å $\mu = 0.097 \text{ mm}^{-1}$ b = 12.896 (1) Å c = 25.077 (3) Å T = 296 (2) K $V = 2328.1 (5) \text{ Å}^3$ Prism, pale yellow $0.44 \times 0.36 \times 0.28 \text{ mm}$ $D_x = 1.325 \text{ Mg m}^{-3}$

Data collection

 $\begin{array}{lll} \text{Bruker } P4 \text{ diffractometer} & h = -1 \rightarrow 8 \\ \omega \text{ scans} & k = -1 \rightarrow 15 \\ 3576 \text{ measured reflections} & l = -1 \rightarrow 30 \\ 2280 \text{ independent reflections} & 3 \text{ standard reflections} \\ 893 \text{ reflections with } I > 2\sigma(I) & \text{every } 97 \text{ reflections} \\ R_{\text{int}} = 0.0242 & \text{intensity decay: } 3.93\% \\ \theta_{\text{max}} = 26^{\circ} & \text{intensity decay: } 3.93\% \end{array}$

electronic papers

Refinement

refinement

Refinement on F^2 $w = 1/[\sigma^2(F_o^2) + (0.0265P)^2]$ $R[F^2 > 2\sigma(F^2)] = 0.037 \qquad \text{where } P = (F_o^2 + 2F_c^2)/3$ $wR(F^2) = 0.077 \qquad (\Delta/\sigma)_{\text{max}} = 0.001$ $S = 0.810 \qquad \Delta\rho_{\text{max}} = 0.15 \text{ e Å}^{-3}$ $\Delta\rho_{\text{min}} = -0.13 \text{ e Å}^{-3}$ Extinction correction: SHELXL97 H atoms treated by a mixture of independent and constrained Extinction coefficient: 0.0071 (5)

 Table 1

 Selected geometric parameters (\mathring{A} , °).

O1-C1	1.344 (2)	N1-C4	1.449 (2)
O2-N1	1.230(2)	N2-C11	1.327 (2)
O3-N1	1.220 (2)	N2-C7	1.328 (2)
O2 N1 O2	122.1 (2)	C11 N2 C7	116 1 (2)
O3-N1-O2	122.1 (2)	C11-N2-C7	116.1 (2)
O3 - N1 - C4	119.4 (2)	N2-C7-C8	123.6 (2)
O2-N1-C4	118.5 (2)	N2-C11-C10	123.7 (2)

 Table 2

 Hydrogen-bonding geometry (\mathring{A} , $^{\circ}$).

$D-H\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-\mathrm{H}\cdots A$
O1−H···N2	0.93 (2)	1.74 (2)	2.668 (2)	174 (2)

The carboxyl H-atom coordinates were refined isotropically; all other H atoms were treated as riding atoms.

Data collection: *XSCANS* (Siemens, 1991); cell refinement: *XSCANS* (Siemens, 1991); data reduction: *SHELXTL-Plus* (Sheldrick, 1990); program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); software used to prepare material for publication: *SHELXTL-Plus* (Sheldrick, 1990).

References

Coppens, P. & Schmidt, G. M. J. (1965). Acta Cryst. 18, 62-67.

Dega-Szafran, Z., Gdaniec, M., Grundwald-Wyspianska, M., Kosturkiewicz, Z., Koput, J., Kryzanowsky, P. & Szafran, M. (1992). *J. Mol. Struct.* **270**, 99–124

Emsley, J. W. (1968). J. Chem. Soc. A, pp. 1387-1393.

Kawai, R., Kashino, S. & Haisa, M. (1976). Acta Cryst. B32, 1972-1975.

Malarski, Z., Majerz, I. & Lis, T. (1987). J. Mol. Struct. 158, 369–377.

Malarski, Z., Majerz, I. & Lis, T. (1996). J. Mol. Struct. 380, 249-256.

Moreau Descoings, M. C., Guillaume Vilport, F., Seguin, J. P., Uzan, R. & Doucet, J. P. (1985). J. Mol. Struct. 127, 297–303.

Nouwen, R., & Huyskens, P. (1973). J. Mol. Struct. 16, 459-471.

Ratajczak, H.& Sobszyk, L. (1965). Zh. Struckt. Khim. 6, 262-270.

Sakurai, T. (1962). Acta Cryst. 15, 1164-1168.

Sawka-Dobrowolska, W., Grech, E., Brzezinski, B., Malarski, Z. & Sobczyk, L. (1995). J. Mol. Struct. 356, 117–124.

Sheldrick, G. M. (1990). SHELXTL-Plus. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Siemens (1991). XSCANS Users Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.